AALO: Activity recognition in smart homes using Active Learning in the presence of Overlapped activities
ثبت نشده
چکیده
We present AALO: a novel Activity recognition system for single person smart homes using Active Learning in the presence of Overlapped activities. AALO applies data mining techniques to cluster in-home sensor firings so that each cluster represents instances of the same activity. Users only need to label each cluster as an activity as opposed to labeling all instances of all activities. Once the clusters are associated to their corresponding activities, our system can recognize future activities. To improve the activity recognition accuracy, our system preprocesses raw sensor data by identifying overlapping activities. The evaluation of activity recognition performance on a 26-day dataset shows that compared to Naive Bayesian (NB), Hidden Markov Model (HMM), and Hidden Semi Markov Model (HSMM) based activity recognition systems, our average time slice error (24.15%) is much lower than NB (53.04%), and similar to HMM (29.97%) and HSMM (26.29%). Thus, our active learning based approach performs as good as the state of the art supervised techniques (HMM and HSMM).
منابع مشابه
A Sensor-Based Scheme for Activity Recognition in Smart Homes using Dempster-Shafer Theory of Evidence
This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically ...
متن کاملEvaluation of Wellness Detection Techniques using Complex Activities Association for Smart Home Ambient
Wireless Sensor Network based smart homes have the potential to meet the growing challenges of independent living of elderly people in smart homes. However, wellness detection of elderly people in smart homes is still a challenging research domain. Many researchers have proposed several techniques; however, majority of these techniques does not provide a comprehensive solution because complex a...
متن کاملEvaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data
Smart homes for the aging population have recently started attracting the attention of the research community. The "health state" of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activitie...
متن کاملDetection of children's activities in smart home based on deep learning approach
Monitoring behavior of children in the home is the extremely important to avoid the possible injuries. Therefore, an automated monitoring system for monitoring behavior of children by researchers has been considered. The first step for designing and executing an automated monitoring system on children's behavior in closed spaces is possible with recognize their activity by the sensors in the e...
متن کاملDetection of children's activities in smart home based on deep learning approach
Monitoring behavior of children in the home is the extremely important to avoid the possible injuries. Therefore, an automated monitoring system for monitoring behavior of children by researchers has been considered. The first step for designing and executing an automated monitoring system on children's behavior in closed spaces is possible with recognize their activity by the sensors in the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012